Face Detection Based on Fuzzy Cascade Classifier with Scale-invariant Features

نویسندگان

  • Yafeng Deng
  • Guangda Su
چکیده

Viola et al. have introduced a rapid object detection framework based on a boosted cascade of simple feature classifiers. In this paper we extend their work and achieve two contributions. Firstly, we propose a novel feature definition and introduce a feature shape mask to represent it. The defined features are scale-invariant which means the features can be rescaled easily and reduce the performance degradation introduced by rounding. The feature shape mask can be computed efficiently and expanded conveniently, which can simulate feature shapes used by others and thus enriches the haar-like feature pool. Secondly, we present an improved cascade-structured classifier which is called fuzzy cascade classifier. The cascade-structured classifier owns the disadvantage of neglecting confidence of the prior stage classifiers while only using the binary output of prior stages. Motivated by fuzzy theory, we expand the output of each stage to three states: face, non-face, and potential face and set probability being face to each candidate window to make full use of the information of prior stages. Merged by voting, we improve the hit rate at similar false alarm rate. Keyword: Face detection, AdaBoost, Scale-invariant feature, Fuzzy cascade classifier

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian Vehicle License Plate Detection based on Cascade Classifier

A license plate recognition system contains three main steps: plate detection, character segmentation and character recognition. The first and foremost step of this system is the plate detection stage where the plate is located from the input image. In this paper an effective plate detection approach is developed based on a cascade classifier. A two-phase training approach is proposed to enhanc...

متن کامل

SUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS

This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...

متن کامل

A Novel Face Detection Method Based on Over-complete Incoherent Dictionary Learning

In this paper, face detection problem is considered using the concepts of compressive sensing technique. This technique includes dictionary learning procedure and sparse coding method to represent the structural content of input images. In the proposed method, dictionaries are learned in such a way that the trained models have the least degree of coherence to each other. The novelty of the prop...

متن کامل

A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm

The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...

متن کامل

Implementing the Viola-Jones Face Detection Algorithm

..................................................................................................................................................................... 3 RESUMÉ ........................................................................................................................................................................... 4 PREFACE ...........................................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006